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This document provides supplementary information for the article ‘Single-shot 

quantitative optical anisotropy imaging with polarized interference microscopy’.  The 

first part illustrates the retrieval of the complex field and the 0th order amplitude from the 

recorded interferogram. The second part shows a theoretical analysis of QPIM 

measurement sensitivity. The third part provides a temporal noise analysis of our QPIM 

system, whereas the last part presents a spatial noise analysis of our QPIM system. 
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1. The Retrieval of Complex Field 

The Fourier transform of Equation 9 is: 
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where ( , )u v   represents the 2D Fourier space of ( , )x y  ; 2Dℑ represents the 2D Fourier 

transform;  ⊗ represents the 2D convolution;  ( , )u vδ  is a 2D delta function. As seen from Eq. 

(S1), there are 0th and 1st order terms in the frequency domain, and each order contains the 

birefringence parameters. A mask ( , )M u v   is used to numerically extract the 0th and 1st order 

signals under the restriction of the numerical aperture of the system1. For selecting the 1st 

order (centered at 0u u=  , where 0 / 2u k π=  ), we let ( , ) 1M u v = when 

( )2 2
0 ,u u v NA λ− + <   and  ( , ) 0M u v =  for all other regions. After extracting the 1st order 

signal, we shift it back to the origin, which gives the complex electric field: 
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With a 2D inverse Fourier transform,  ( , )U x y  is obtained as written in Equation 10. The 0th 

order can be extracted as: 

( , ) 2 ( , ) ( , ).inA u v u v I u vτ= ⊗                                                    (S3) 

Therefore, the distribution of the 0th order signal in the spatial domain is obtained as described 

by Equation 11. 
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2. Sensitivity Analysis for QPIM 

Like other quantitative phase microscope designs, the measurement sensitivity of QPIM can 

be affected by many environmental factors, such as mechanical vibrations or air density 

fluctuations. However, when these environmental influences are minimized, the effect of shot 

noise becomes dominant. According to Poisson statistics, the minimum temporal standard 

deviation of the intensity can be expressed as: 

1 ,I
N

δ =                                                               (S4) 

where is the well depth of the camera. For interferograms of near-common-path setups, the 

intensity distributions can be expressed by (note that for simplicity we consider a one-

dimensional signal, but it can be easily extended to 2D signals): 

0
2( ) 1 ( )cos ( ) .I x I x x xπ

γ φ
⎧ ⎫⎡ ⎤= + +⎨ ⎬⎢ ⎥Λ⎣ ⎦⎩ ⎭

                                         (S5) 

where ( )I x denotes the interferogram distribution,  0I is the average value of the 

intensity(assume the illumination inI   is uniform and the sample’s absorption τ  is negligible),  

( )xγ  and  ( )xφ represent the amplitude and phase of the detected complex field, and  is the 

spatial period of the interferogram.  ( )xφ  is actually the differential phase of two sample 

beams. Based on our algorithm, we can retrieve the 0th order intensity (i.e., DC term), the real 

part, and the imaginary part of complex field which can be shown as: 
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In Figure S1a, we described a simple situation that four camera pixels sample each period of 

the fringes. We also assume that 0
1 , ( ) 1, ( ) 0.
2 sI x xγ φ= = =  The intensities of each pixel are 

1 3 2 41, 0, 1/ 2.I I I I= = = =  Therefore, based on previous analysis2,  A ,  B , and  C  can be 

retrieved as: 
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Since the intensity of each pixel is proportional to the number of photons received, following 

the Poisson statistics the measurement uncertainties of A  ,  B  , and C   are  

2 2 2 2 2 2
1 2 3 4

1 1( ) ,
4

A I I I I I
N

δ δ δ δ δ δ= + + + ≥ =                             (S8) 

2
2 2 1 3

1 3 2
1 3

1 3

( )1 1( )
4 4 ( )
1 1 1 ,
4 4

n nB I I
n n

n n N

δ
δ δ

−
= − =

−

= ≥
−

                                       (S9) 

2
2 2 2 4

2 4 2
2 4

2 4

( )1 1( )
4 4 ( )
1 1 1 ,
4 4

n nC I I
n n

n n N

δ
δ δ

−
= − =

−

= ≥
−

                                     (S10) 



  

5 
 

We can see that the optimal variances of both B and C equal 1/4N. The DC term of the 

interferogram, A is the spatial average of the interferogram. We can also assume its 

uncertainty is the same as the interferogram as shown in Equation S8. Therefore, we can 

conclude that the optimal standard deviations are: 

1 1, .
2 2
IA I B C

N N
δ

δ δ δ δ= = = = =                                          (S11) 

According to the result shown in Equation S9 and the principles of error propagation3, the 

uncertainties of recovered retardance and orientation angle are shown below: 
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Based on Equations 11-13, if we assume the transmittance τ  of the sample and the 

illumination intensity distribution inI   is uniform, we can rewrite the DC term A , real part B , 

and imaginary part C  from the given values of retardance Δ   and orientation angle .ϕ    

Therefore, the standard deviations of varying retardance and orientation angle can be 

simulated, which are shown in Figures S1b-d, where we assume the well depth of the camera 

is 10651 electrons. For the measurement of retardance, the uncertainty is only related to its 

own actual values. As shown in Figure S1b, the retardance measurement is the most accurate 

when the actual retardance is π/2 with a standard deviation of 0.014 rad. However, the 

uncertainty becomes singular when the actual retardance is 0 or π, which means the 

measurement is not reliable when the anisotropic signal is very weak. For the measurement of 

orientation angle the situation is more complicated. Its uncertainty relies on both retardance 
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and orientation angle values. The standard deviation of orientation angle becomes singular 

when the retardance is 0 or π, which is shown in Figure S1c. It is reasonable because when the 

retardance is zero, the measured orientation angle value has no physical meaning (i.e., the 

sample is essentially isotropic). The standard deviation of orientation is also related to the 

orientation angle itself, which is shown in Figure S1d where the retardance is fixed at π/2. The 

uncertainty is singular when the orientation angle is 0 or 90 degrees, which means the 

measurement of orientation is not reliable when it is parallel to x or y axis defined by the 

Wollaston orientation. The optimal sensitivity orientation angle is 0.79 degree (0.014 rad) 

when the retardance is π/2, and the orientation angle is 45 or 135 degrees. However, these 

simulated results assume that the depth well is depleted in every pixel of the camera, which is 

impossible in actual measurements. Therefore, the measured temporal noise is always larger 

than the calculated one. But we can still learn the trend of the shot noise variation on the 

dependency of the measured retardance and orientation angles with the simulation results. 

 

3. Temporal Noise Analysis 

To experimentally analyze the temporal uncertainty of the QPIM system, we measured 900 

consecutive interferograms on the LCD sample at 150 fps imaging speed while no voltage is 

applied (this ensures that the retardance is uniform over the whole field of view). After 

acquiring the interferograms, we retrieved the 0th order intensity ( A ), and the real part (B ) 

and the imaginary part (C ) of the 1st order complex field, and then recover the retardance and 

the orientation angle distributions based on our algorithms (refer to Method Section A). We 

pick the sample pixel of each image, record their variations over time. In this way, we can 

obtain the time lapse and analyze their temporal uncertainties. As shown in Figure S2a, the 

standard deviation of the 0th order intensity ( A ), and the real part ( B ) and the imaginary part 
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(C ) of the retrieved complex field is 0.011, 0.005 and 0.005, respectively. The well depth for 

the camera is 10651 electrons, which means that the intensity standard deviation due to the 

photon shot-noise is 0.0097. The experimentally measured values are slightly larger than 

expected values of 0.0097 (for A ), 0.0049 (for B ), and 0.0049 (for C ). The reason may be 

that the electron well is not fully filled. In Figure S2b, the temporal uncertainties of the 

recovered retardance and orientation angle are also experimentally measured, which are 0.04 

rad and 2.05 degrees respectively. Also, the histograms of retrieved retardance and orientation 

angle time series are shown in Figures S2c and d. The measured value of retardance and 

orientation angle are 0.3π rad and 30.6 degrees. From the theoretical frame mentioned in 

Equations S12-S13, the corresponding uncertainties for retardance and orientation angle are 

0.02 rad and 1.3 degrees. The discrepancies may also due to the insufficiency filling the 

electron well factors and other systematic errors rooted in the current QPIM system. 

Nevertheless, we should be mindful that the birefringence uncertainties are dominated by the 

photon shot noise, which can be only improved by using higher well depth cameras. 

 

4. Spatial Noise Analysis 

To determine the spatial noise of birefringence measurements using our system, we calculated 

the standard deviation of the a fixed 200 × 200-pixel region in the recovered retardance, 

orientation angle, and unwrapped retardance maps. The distributions are measured from the 

nematic liquid crystal sample, and a uniform region as indicated by white boxes in Fig. S3 is 

used for calculating the spatial uncertainty values. Figure S3a, c, and e show the recovered 

retardance, orientation angle, and the unwrapped retardance distributions, respectively. 

Histograms corresponding to the white box regions are generated as shown in Figure S3b, d, 

and f. From the histograms, we determined that the standard deviation of retardance, 
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orientation angle, and unwrapped retardance are 0.0061 rad, 0.40 degrees, and 0.0031 rad. 

Those values, if translated into optical path differences, are within 0.3-0.6 nm. 
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Figure S1.  Theoretical analysis of QPIM sensitivity. (a) The sketch of the interferogram 

intensity distribution relative to the well depth of the camera; (b) the relation of the recovered 

retardance’s standard deviation and the actual value of it; (c) the relation of the recovered 

orientation angle’s standard deviation and the actual value of retardance; (d) the relation of 

the recovered orientation angle’s standard deviation and its own actual values. 



  

10 
 

 

Figure S2.  Time lapse of birefringence parameters and temporal noise analysis. (a) The time 

lapse plots of the recovered 0th order intensity(A), and the real part (B) and imaginary part(C) 

of +1st complex field. (b) The time lapse plots of the retardance and orientation angle. The 

recording period is 6 seconds at 150 fps (c) the histograms of the retardance and (d) 

orientation angle time series. The unit of retardance and orientation angle is radiance and 

divided by π. 
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Figure S3.  Spatial uncertainty analysis of the measured birefringence parameter on a uniform 

LC region. (a) The recovered retardance distribution; (b) the histogram of the region marked 

with dashed white line in (a); (c) the recovered orientation angle distribution; (d) the 

histogram of the white dashed line marked region in (c); (e) the unwrapped retardance 

distribution; (f) the histogram of the white dashed line marked region in (e). 

 

 

 


